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ABSTRACT 

Let S(t) denote  a simple r andom walk in Z 2 with integer t ime  t. The  

disconnect ion exponen t  ~ is defined by saying the  probabil i ty tha t  the  

p a t h  of S s ta r t ing  at  0 and  ending at  the  circle of radius  n d isconnects  

0 f rom infinity decays like n -~ .  We prove tha t  the  disconnect ion expo- 

nen t  is well-defined and  equals  the  disconnect ion exponen t  for Brownian  

mot ion  which is known to exist.  

1. Introduct ion  

Let S(t) denote a simple nearest neighbor random walk in Z 2 with integer time 

t. The disconnection exponent # is defined by saying that the probability that 

the path of a random walker from 0 to the sphere of radius n does not disconnect 
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0 from the sphere is of order n -~. To be more precise let Cn be the discrete ball 

of radius n, 

= {x Ix] < n},  

and 

OC~ = {y E Z 2 \ C,~: [y - x[ = 1 for some x E C,~}. 

Let 

Tn = inf{t _> O: S(t) E OCn} 

and let Sn be the event that there is a nearest neighbor path from the origin to 

0C,~ which does not intersect 

s(0 ,  = {s( t ) :  0 < t < 

We then define ~ by 

P(Sn) ~ n -q, 

where ~ denotes "logarithmically asymptotic to", i.e., 

in P(:~n) 
lim - -  - -'~. 

n--*oo In n 

Implicit in this definition is the existence of the limit. In [4] it was shown that  

> 0 in the sense that 
l n P ( • )  

lim inf > 0, 
n--*oo In n 

but it was not shown that the limit exists. The purpose of this paper is to show 

that  the limit exists and is equal to the corresponding exponent for Brownian 

motion. 

Let B(t) denote a Brownian motion in R 2. Let D~ denote the open ball of 

radius r about 0 with boundary OD~. Set 

T~ = inf{t >_ O: B(t) E OD~}. 

Start  a Brownian motion on the ball of radius 1 about the origin. For r > 1, 

let r  be the probability that the origin is in the unbounded component of the 

complement of B[0, Tr], i.e., the probability that the Brownian motion does not 

disconnect the origin from ODr. A straightforward subadditivity argument (see 

[9, 5.5]) can be used to show that the limit 

lim In r _ ,~ 
r--.oo In r 
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exists, i.e., r ..~ r-% The exact value of 7 is not known although it has been 

conjectured using nonrigorous conformal field theory [6] that 7 = 1/4. It has 

been shown that 
1 

- -  < 7 < .469 
27r-  

The upper bound for 7 has been proven by Werner [11,12]. The lower bound 

was derived by Burdzy and Lawler [2, 3] and used to estimate the "intersection 

exponent" for Brownian motion, which they showed is the same as the intersection 

exponent for simple random walk. Cranston and Mountford [5] have shown that 

this is also the intersection exponent for any mean zero, finite variance, truly 

2-dimensional random walk. 

In trying to estimate intersection probabilities for a model of random walks in 

dimensions strictly between one and two, the second author [10] wanted to use 

the disconnection exponent to help estimate some intersection exponents. This 

requires working with 2 rather than 7. The purpose of this paper is to show that 

they are in fact the same. 

THEOREM 1.1: Let S(n) be a simple random walk in Z 2 and let Sn be the event 

described above. Then 

P(S , )  ~ n-'f, 

where 7 denotes the disconnection exponent/'or Brownian motion. 

The proof uses a strong approximation theorem which states that a Brownian 

motion and a random walk can be defined on the same probability space so that 

up to distance n the paths differ by at most c Inn except for an event of very small 

probability. The one-dimensional version of this result was proved by Koml6s, 

Major, and Tusnhdy [8] and a version for simple random walk in two dimensions 

was discussed by Auer [1]. 

In the next section we outline the facts about random walks and Brownian 

motion that we will need. The proof of the main theorem will appear in the final 

section. 

ACKNOWLEDGEMENT: The authors would like to thank the referee for useful 

comments that simplified some of the arguments in this paper. 
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2. Preliminary results 

In this section we will state a number of results about random walks and Brownian 

motion that  we will need in our proof. We start with a strong approximation 

theorem for random walk and Brownian motion first proved in [8]. The following 

version for simple random walk in Z 2 can be found in [1]. 

LEMMA 2.1: For every A > O, there exists a constant e = e(A) < o0 such that 

a simple random walk S on Z 2 and a Brownian motion B with B(O) = S(O) can 

be defined on the same probability space such that for each n, 

P{ max sup IS( t ) -  B(s)I > elnn} = O(n-x). 
O<t<n It-Jl<�89 

This lemma can be modified into the following lemma which we will use. Recall 

the definitions of Tn and Tn from the previous section. It is easy to check that  

P{T~>>_n s}_<e -~ P{r~>_n s } < e  -~n, 

for ,some a > O. We therefore can conclude this version of the lemma. 

LEMMA 2.2: For any A > 0, there exists a constant c = c(A) such that a simple 

random walk S on Z 2 and a Brownian motion B with B(O) -- S(O) can be defined 

on the same probability space such that for each n, 

P{ max sup IS(t) - B(s)l < elnn} >_ 1 - ctn -x  
o<t<T. It-,l<�89 

for some constant d > 0 and for T,, = max(T,,  r , ) .  

We now let n = 2e(100) in Lemma 2.2. (We will never need this sharp an 

estimate, but it will make the proof easier if we fax a particular ~.) 

Also, we will need lower bounds on the random walk disconnection probability. 

Arguments similar to those in [4, Lemmas 5,6] prove the following lemma. Let 

P= denote that  the simple random walk starts at the point x. 

LEMMA 2.3: Let Sn be the event 

{S[0, r,] does not disconnect 0 and OCn }. 

(a) There exists a constant e > 0 such that for a//[x I < (n/2) + 1, 

p*(&~) > c. 
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(b) There exist constants A > 0 and c < cx~ such that for all Ix[ < (n/2) + 1, 

P ' (Sn  e) > 1 - c (l~l/n) ~. 

3. Proof  of  Theorem 

We will let /}n denote the event 

{B[0, T~] does not disconnect 0 and OD,,}, 

and for r < n, 

r n) = P~(B . ) ,  

where Ixl = r. Note that  by scaling, r n) = alp(n/r), for the r defined in the 

first section. For r < n, let 

r  = sup Px(Sn). 
zEoc~ 

Finally we let ~ be the constant defined after Lemma 2.2. We let W,[s,t] be the 

closed Wiener sausage of radius ~ In n about B[s, t], 

W,[s,t] = {y 6 R2: tY - B(u)l _< ~ l n n  for some u 6 Is, t]}. 

We then let g r  denote the event 

{Wn[O, Tn] does not disconnect 0 and ODn}, 

and for r < n, 

~(r, n) = P~(~r 

for [xl = r. Note that  this probability is independent of which x in the circle of 

radius r we choose; however, since the radius of the Wiener sausage depends on 

n, it is not true that  
~(r,n)=~)(1,  n ) .  

The forthcoming lemma tells us that  in some sense the asymptotic behavior of 

r n) is the same as that  of r n). Recall that  7, defined in Section 1, is the 

disconnection exponent for Brownian motion, and hence for any a E (0, 1), 

r ~ n) = r  l -a)  ~ n -(1-a)~ 
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LEMMA 3.1: ForeveryO<a< 1, thereexist6>Oandc<cvsuch that 

~(n ", 2n) - c n -O-") 'r-6 _< ~(n ", n) < r ", n). 

Proof" Fix 0 < a < 1. Since Wo C/~,~, we have, for Ix[ = n ~ 

P'(/~n) ~ P'(IYJn) = P'(/~. N lit'n) 

_> P'(/}2. n Wo) = P' ( /32 . )  - P'(/}2. n W~). 
Then, as it is easy to show that there exist 6, c such that 

g~(2~]nn, n) _< c n -('-a)~-6, 

it sui~ces to show that 

PZ(/~2. r'l I~ zc) _< ~(2xlnn,  n). 

First suppose that T2~ j.,, < T..  Then the strong Markov property implies 

that at time T2~ I . . ,  

P ' ( ( ]32 .  n ITv'~) n {T2~l.. < T.}) _< P'{T2~lno < T.} 0(2xlnn ,  n). 

Conversely, now suppose that T2~ l . .  > T,~. Let 

a = a .  = inf{t _> 0: Wo[0, t] disconnects 0 and 0 0 . } .  

Then • is a stopping time and in the event I~'~, we have ~r _< T.. Furthermore, 

if T2~ ]n,~ > Tn and lr c occurs, then there exists a time 

a '  = sup{t E [0,a) such that Wo[tT',a] disconnects 0 and ODo}. 

Then [B(a')  - B(a)[ _< 2x lnn  by definition of W.,  and it is easy to see that 

B[#',  a] u [B(a') ,  B(o)] disconnects 0 from OD.. Also from topological consider- 

ations, one can see that if B[~, T~.] disconnects B(a ' )  from OD2,~, then B[0, T2,,] 

disconnects 0 from OD2n. 
Consider the event E that Bi t ,  T2o] does not disconnect B (a  ~) from OD2o 

(conditional on T2~loo > To and I ~ ) .  Here we have a Brownian motion starting 

at distance 2~ In n from the point B(#  ~) and reaching a distance of at least n 

without disconnecting B(o  ~) from the infinity. Thus P(E) <_ ~b(2x In n, n). 

Then, 

P~([~2o n Igr~) <_ t~(2xinn, n)(P'(Tz,dno < To) + P=(T2,~l.o > T,,)) 

= ~(2,~ In n, n) 
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which completes the proof. | 

We will next prove the upper bound 

In P~ 
lim sup < % 

n - o o  In  n - 

T o  show this, we will need lower bounds on P~ so we will consider a specific 

case of no disconnection from the origin to the boundary of the ball of radius 

n. First we require that  the random walk S stay within a sector of the ball Cn. 
until it reaches 0C,~. which will ensure no disconnection from time 0 to time 

Tn.. Second, starting a Wiener sausage at the point S(v , . ) ,  we require that the 

random walk stay within this sausage until it hits the boundary a C ,  and that  

the Wiener sausage does not disconnect 0 and OD,. This ensures that there is 

no disconnection by the random walk from time T,. to time %. To keep the 

two parts of the random walk from creating a disconnection, we also require 

that  the generating Brownian motion of the Wiener sausage stay outside the ball 

Dn'+~lnn after a certain time p. 

Consider the discrete ball C,~. in Z 2 and the half-plane 

A = {(z ,y)  e R2: z > 0}. 

The set Cn. Cl A is a sector of the ball subtended by the angle/9 = 7r. If we 

consider a random walk S starting at the origin and define the event 

U = {S[0, ~r,.] C (C~. N A)}, 

then (see, for example, [9, Proposition 2.4.5]) there exists a constant c such that  

P~ > cn -~.  

Note that  if the random walk S stays in this sector, S[0, rn-] cannot disconnect 

0 and aDn. 
Next consider the ray L = {(x, y) E R2: x < 0, y = 0}. Let B be a Brownian 

motion starting at some point x on the set aD,, .  N A and define the stopping 

time 

p = inf{t > O: B(t) E L}. 

Consider the event 

x = (IB(t)l > n* + ~tun,  t e [p,Z,]}. 
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Let w be a point on OD2n.. And let G = [arg(B(0)) - ~, arg(B(0)) + ~]. Then 

there exists a constant c such that 

Px(X) >_ PX{arg(B(t)) e G, t �9 [0,T2~.]} P~(T,~ < T] . . }  

In Iwl - In 
~ c  

In n - In ~ n"  

c > - -  
- I n n "  

(The second inequality uses a standard result about Brownian motion; see, for 

example, [7, Section 1.7].) Note that  given event X, the Wiener sausage generated 

by B[0, T~] can only disconnect 0 from ODn at some point outside the ball of 

radius n a. 

Next we want to find lower bounds on the probability that,  given event X,  the 

Wiener sausage starting at a point x E OD,. does not disconnect 0. We will 

make use of the following lemma. 

LEMMA 3.2: For every a > 0, there exist e > 0 and c > 0 such that for 

y E OD~.+~ln~ and for x E ODn., 

P~(17Vn) < P~(ITV,~) + cn -(x-a)'r-'. 

Proo~ Let V be the event 

{ IB( t ) l  > t e [O,T. ]} .  

Then 
PU(17Vn) = PU(ITVn N V) + PY(ff'n M V c) 

< P~(IYVn I"1 V) + P'(17V.). 

Let b > a, where the exact value of b will be determined later. Note that  by the 

strong Markov property, for z E 0D~,, 

PU(lZV. N V) <_ PY{T., < Tn.} PZ(iTv. N V) <_ BY{T., < T. .}  P ' (W.) .  

We note that  

In lyl - Inn  
PY{Tn~ < T,~.} = lnnb _ l n n a  

< (n-'b~ Inn + l n n  a) - Inn a 

- (b - a)  In n 

n--a. 
b - a  
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Also, 
PZ(l~n) < r l-b) < n-(i-b)7+ a, 

for any 6 > 0 given n sufficiently large (depending on 8). Thus, we have 

PY(W,) < PX(ff',) + c(b - a ) - l n - a n  -(1-bb+'~. 

To conclude the proof, we choose b and ~ so that  a + (1 - b)7 - ~ > (1 - a)?. 
| 

From this lemma and the strong Markov property, we can see that if x E OD,~. 

and y E ODn.+,,h,,,  

P~(I~. [ X c) < PY(I~r.) _< P'(IP.) + cln-(X-~)7-t 

So 

P~(IP. [X) = [P~(I~'.) - P~(17r [ Xc)P~(XC)][Px(X)] -I 

>_ [P~(I/d.) - (P~(ff'.) + cin-(i-ab-~)(l - P~(X))] 

. [px(x)] -I 

>_ [P~(X)P~(I;Vn) - cln-(1-ab-~][p~(x)] -I 

>_ P~(IfV.) - cln-O -a)'r-~ Inn 

_> 

Now we are ready to pull the pieces together to get a lower bound for p0(~). 

Define the event 

i,~ = { max sup IS(t) - B(s)l < ,r 
0<t<T~ It-,l<�89 

Then, for x 60Dr,..,  using Lemma 2.2, 

>_ po(u n i .  n X n 

>_ P~ n X n W.) - P(i~) 

>_ P~ P ' (X  n IP.) - cn -I~176 

= P~ Px(IP,* I X) P~(X) - cn -I~176 

> c(n-ap~(lTVn)(ban) -1 - n-100). 

Now, for any e > 0, we can find constants Cl = cx(e) and c2 = Cz(e) such that  

~(r) <_ clr -'~+" and  r  _> c2r -~- ' .  
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Then using Lemma 3.1, we can find a constant c such that 

pO(~)  > cn-an-O-a)~n-~(~/2)(lnn)-l. 

As this holds for all 0 < a < 1, we have that  

l imsup lnP~ _< 7. 
~--.r in n 

Next we will show that  

l iminf lnP~ _ 7. 
n-.o~ In n 

To prove this, it suffices to show that for any 0 < a < 1 

liminf l n r  >__ 7 ( 1 - a ) .  
n--*cc In  n 

As in the definition of the Wiener sausage W~ Is, t], we define a fattened random 

walk of radius ~ ln n about S[s, t]: 

v,[s,t] = { y  e R~: ly - S (m) l  < ~h~n  for some m �9 [ s , t ] } .  

We then let 17",~ denote the event 

{Vn[0, rn] does not disconnect 0 and OCn}, 

and for r < n, let 

~b(r,n) = sup p = ( ~ ) .  
zEOCr 

LEMMA 3.3: For every 0 < a < 1, there exists a constant c > 0 such that 

~(n ~ n) < r a, n) + c n -1~176 

Proof: Fix 0 < a < 1. Assume that the random walk S starts at x E OCt,. 

Using the event A~ defined above and Lemma 2.2, 

~b(n',n) <_ sup p=(17~ N ,4~) + sup p=(17~ N .4~) 
zEOC,** xEOC,~o 

< sup PX(l?nNin)+cn-1~176 
zEOC~ 

for some constant c > 0. 
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Now suppose that Yn[0, Tn] is the closed Wiener sausage of radius 2,~ inn about  

B[0, Tn]. And let ]Tn be the event that Y,~[0, T,~] does not disconnect 0 and ODn. 

Then 

sup P~(l?,~ N.4,)  < P~(~',) _< P~(Bn) = r  
xEOC,~,, 

which concludes the proof. I 

LEMMA 3.4: For every 0 < a < 1 and e > 0, there exist constants c, c', e ~ > 0 

such that 

r  ~ 2n) < c n -(~-")~ n" + c' n-~' r176 n). 

Proof: Fix 0 < a < 1. In the following, each supremum is taken over all points 

y such that  y E OC(2~p. We have 

r  a, 2n) = sup Pu(S2,)  

< sup P~($2,  I"1 15"n) + sup P~($2n M 1~) 

which completes the proof. 

< r n)+ sup Pu(S2, n 17~). 

Let l~n be as above. Then, using Lemma 3.3, 

~((2n) ~ .) < sup P~(~. n ~.)+ sup P~(~'. n ~) 

< P~(?.) + v~(~) 

<_ r ~ n) + c n -1~176 

For any 6 > 0, we can find a constant c > 0 such that r < cr -~+~, and 

therefore, for any e > 0, 

r  + c n -x~176 < c n -(x-a)'y n ~ 

for some c > O. 

Next, we can use an argument similar to that used in the proof of Lemma 3.1 

to bound sup PU(S2n N l?c). Then, by Lemma 2.3, there exist constants d, 4 > 0 

such that 
sup PY($2,, n 17~) < r  n) 

<_ r  n ~) r  

_< e' n-" r n) 

I 
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If f is a positive, bounded function satisfying 

/(2n) _( cln  -b + c 2 n - ' f ( n )  

for some positive Cl, c2, b, e, then one can check that  there is a c3 such that  

f(2n) < c3 n-b. 

Using Lemma 3.4, we have 

~b(n a, n) < c n '  n -(1-'~)'r. 

Thus we have that  
liminf ln r  > 7(1 - a). 
n--*oo In n - 
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